ஓரிகமியால் மடிந்த கண்ணாடி பொருட்களை உருவாக்கும் புதிய நுட்பம்

பெரும்பாலான முப்பரிமாண கண்ணாடி பொருட்கள் ஒரு மோல்டிங், ஊதுதல் அல்லது 3D-அச்சிடும் செயல்முறை மூலம் தயாரிக்கப்படுகின்றன. சமீபத்தில், ஜெஜியாங் பல்கலைக் கழகத்தைச் சார்ந்த சீன விஞ்ஞானிகள் (Xu, Xie  மற்றும் குழுவினர்), அத்தகைய பொருட்களை, வடிவில் மடிக்கும் கண்ணாடியை 3D-அச்சிடும் முறையில் உருவாக்கியுள்ளனர். 

ஓரிகமி மற்றும் 3D-அச்சிடுதல் என்ற இரு நுட்பங்களையும் அவற்றின் கவர்ச்சிக்குமான பண்புகளை எவ்வாறு பயன்படுத்தலாம் என்ற வினாவில் விளைந்தது இப்புதிய  கண்டுபிடிப்பு.

ஓரிகாமி( origami) என்பது‌ 17ம் நூற்றாண்டில் ஜப்பானில் உருவான ஒரு  கலை.  காகிதத் தாளை (ஓரி) மடித்து (காமி), வெட்டுதல், ஒட்டுதல் இல்லாமல் பல்வேறு உருவங்களில் கலைப்பொருளாக மாற்றுவதே ஓரிகமி ஆகும்.  ஒரு சமபரப்புள்ள தாளைக் கொண்டு, சற்றே மாறுபட்ட மடிப்புகள் மூலம் உருவங்கள் செய்வதில், சிக்கலான நிலை ஓரளவு குறைவாகவே இருக்கும்.   

புதுமையான பொருட்களின் கலவையுடன் நிலையான ஒரு 3D பிரிண்டரில் பல்வகை கண்ணாடிப் பொருட்கள் அச்சிட முடியும்.  சிக்கலான சிலிக்கா கண்ணாடி வடிவமைக்க பொதுவாக 1000° C க்கு மேல் சூடாக்க வேண்டும்.  அச்சிடலின் போது இத்தகைய‌ வெப்பமடைவதைத் தவிர்க்க, சூரிச்சில் உள்ள சுவிஸ் ஃபெடரல் இன்ஸ்டிடியூட் ஆஃப் டெக்னாலஜியில் குணால் மசானியா, ஆண்ட்ரே ஸ்டுடார்ட் மற்றும் குழுவினர், ஒரு கண்ணாடி செய்முறையை உருவாக்கினர். அதில் கனிம கண்ணாடி முன்னோடிகளுடன், ஒளி-பதிலளிக்கக்கூடிய கரிம கலவைகள் உள்ளன. இக்கலவையை சாதாரண 3D பிரிண்டரில் சேர்த்து,  புற ஊதா ஒளியைப் பயன்படுத்தி திரவ மைகளை, திடப்படுத்தலாம். 

சீன விஞ்ஞானிகள், சற்று மாறுபட்ட ஒரு புதிய முறையைக் கையாண்டனர்.  சிலிக்கான் நானோ துகள்களை,  ஒளிச்சேர்க்கை (photosensitive) திரவ பாலிமர் மற்றும் பிற சேர்மங்களின் கரைசலில் கலந்தனர். அச்சிடும் போது, புற ஊதா ஒளியின் வெளிப்பாடு இக்கரைசலை திடமான குறுக்கு இணைக்கப்பட்ட (cross polymerization) பாலிகாப்ரோலாக்டோன் பாலிமராகி மாற்றுகிறது.  இது கண்ணாடி முன்னோடிகளான, சிலிக்கா மணிகளை ஒன்றுபடுத்த காரணமாகிறது. பிறகு இதை காகிதத் தாள்கள் போல் ஒளி ஊடுருவிச் செல்லும் வகையில் வெட்டலாம். மற்றும் இதை மடித்து, முறுக்கி, பல முப்பரிமாண வடிவங்களாக மாற்றலாம்.

அறை வெப்பநிலையில் மடிக்கும் போது, தாள்கள் பொதுவாக அந்த வடிவங்களில் இருக்கும்.‌ அவைகள்  265° F (129° C) க்கு சூடாக்கப்படும்போது, நீட்டப்பட்டாலோ அல்லது மடிக்கப்பட்டாலோ, அதன் வடிவங்கள் மாறுபடாது. பாலிமர் சங்கிலிகளுக்கு இடையேயுள்ள இணைப்புகள் நிரந்தரமாக மறுசீரமைக்கப்படுகின்றன. மேலும் அவை செயல்முறை முழுவதும் அவற்றின் சரியான வடிவத்தை வைத்திருக்க முடியும். 

அச்சிடப்பட்ட கட்டமைப்பை 1100 °F (593 °C) க்கும் அதிகமான வெப்பப் படிநிலையில் சுடும்போது, பாலிமர் உருகி,  அதை வெறும் சிலிக்கா துகள்களிலான (silica particles) ஒளிபுகாதாக பொருளாக மாற்றுகிறது. குளிர்ந்த பிறகு, சின்டரிங் என்ற மூன்றாவது வெப்பமூட்டும் படி 2300°F வெப்பநிலையில் சிலிக்கா துகள்கள் ஒன்றாக உருகி, மென்மையான, அடுக்கு இல்லாத அமைப்புடன் பொருளை தெளிவான கண்ணாடியாக மாற்றுகிறது. முழு வெளிப்படைத்தன்மையை அடைவதே இத்திட்டத்தின் மிகப் பெரிய சவால். கலவையில் அதிக பாலிமரைச் சேர்ப்பதால், பொருட்களை மடிக்க எளிதாக்கியது. ஆனால், அவற்றின் இறுதி வெளிப்படைத்தன்மையைக் குறைத்தது.  பாலிமர் மற்றும் சிலிக்காவின் சரியான செறிவுகளைக் கண்டறிந்ததே, Xu மற்றும் Xie  யின் வெற்றிக்குக் காரணம்

இந்த முறை, கண்ணாடி மோல்டிங்கைவிட வேகமானது மற்றும் மிகவும் சிக்கலான வடிவமைப்புகளை உருவாக்க முடியும் என கருதப்படுகிறது. அடுத்தபடியாக, சிலிக்கா துகள்களை மாற்றி டைட்டானியம் டை ஆக்ஸைடு மற்றும் சிர்கோனியம் டை ஆக்ஸைடு மூலம் பீங்கான் பொருள்களைப் போல் கையாள முடியுமா என்று ஆராயப்படுகின்றது.

மேலும்:

  1. Origami-inspired technique used to create folded glass objects (newatlas.com)
  2. Origami-Inspired Approach Brings New Materials into the Fold | ACS Publications Chemistry Blog

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.