kamagra paypal


முகப்பு » கணிதம்

70 மில்லியனிலிருந்து 600 வரை

70 மில்லியன் என்பது ஏதோ லாட்டிரி பரிசுத் தொகைபோல் தோன்றுகிறது. ஆனால் இந்த 70 மில்லியன் சொல்வனத்தில் வெளியான இந்தக் கணிதக் கட்டுரையுடன் தொடர்புடையது. அந்தக் கட்டுரையைப் படிக்கத் தவறியிருந்தால், படித்து விட்டு மேலே செல்வது பயனுள்ளதாக இருக்கும்.

எண் கணித ஆராய்ச்சிக்கு 2013 ஆம் ஆண்டு மிகச் சிறந்ததும் வெற்றிகரமானதுமான ஆண்டு எனலாம். சென்ற மே மாதம், யீடாங் சாங் என்ற ஆய்வாளர், 2000 ஆண்டுகளுக்கு மேலாகத் தீர்வு அடைய முடியாதிருந்த ஒரு கணிதக் கேள்விக்கு விடையை உறுதி செய்யத் தேவையான திறப்பை ஏற்படுத்திக் கொடுத்தார். கோடு போட்டால் ரோடே போடுவோம் என்பது போல், சாங் கொடுத்த திறப்பில் புகுந்து பல எண்கணித ஆராய்ச்சியாளர்கள் அந்தக் கேள்விக்கு விடையை நிரூபிக்கத் தேவையாக இருந்த இலக்கின் இடைவெளியை மிகக் குறைத்து விட்டார்கள்.

யீடாங் சாங் (Yitang Zhang)

யீடாங் சாங் (Yitang Zhang)

முதலில் அந்தக் கேள்வி என்ன எனத் தொடங்கி, இன்று வரையான முன்னேற்றத்தை பார்ப்போம். இயல் எண்களை ஓர் நேர்கோட்டில் 1,2,3,4,5,6.7,……எனத் தொடர்ந்து இருக்குமாறு அமைக்க முடியும். இதைத் தான் எண்களின் கோடு (number line) என அழைக்கிறோம். இந்த நேர்கோட்டில் நடந்தால் 2,3,5,7,11,13,17,19,23,29,31,…..எனத் தொடர்ந்து பகா எண்களைக் கடந்து செல்வோம். இந்தப் பகா எண்கள் இந்த நேர்கோட்டில் தொடர்ந்து எண்ணிலடங்காத அளவு இருக்குமா இல்லை ஒரு குறிப்பிட்ட இடத்தோடு நின்று விடுமா எனும் கேள்வி எழுகிறது.

2000 ஆண்டுகளுக்கு முன் யூக்ளிட் “இந்த இயல் எண் கோட்டில் தொடர்ந்து நடந்தால் பகா எண்கள் வந்து கொண்டே இருக்கும். அதற்கு முடிவே இல்லை.” என நிறுவினர். அதாவது அட்சய பாத்திரம் போல், அள்ள அள்ளக் குறையாமல், இயல் எண்களில் பகா எண்கள் வந்து கொண்டே இருக்கும். பகா எண்களை முடிவில்லாமல், தொடர்ந்து காண முடியும் எனக் கூறிய யூக்ளிட், அந்த எண்கள் இயல் எண்களில் எப்படிப் பரவியுள்ளன, அந்த இயல் எண் நேர்கோட்டில் நடந்தால் ஒரு பகா எண்ணைக் கடந்தால் அடுத்தது எப்போது வரும் என்றெல்லாம் கூறவில்லை.

ஆனால் யூக்ளிட் பகா எண்களில் இருக்கும் ஒர் அதிசயமான விஷயத்தைப் பார்த்தார். இரட்டைப் படை எண்களில் 2 ஒன்று தான் பகா எண்ணாக இருக்கும்.அதற்குப் பிறகு வரும் அனைத்து பகா எண்களும் ஒற்றைப் படை இயல் எண்கள் தான் என்பது பொதுவாக எல்லோரும் அறிந்த விஷயம். இங்கு தான் யூக்ளிட் அடுத்தடுத்து வரும் ஒற்றைப் படை எண்கள் பகா எண்களாக வருவதைக் கண்டார். உதாரணமாக (3,5), (5,7), (11.13), (17,19), (29,31)…என இருப்பதைக் காணலாம். இது போல் அடுத்தடுத்த ஒற்றைப் படை எண்கள் பகா எண்களாக இருப்பவற்றை இரட்டைப் பகா எண்கள் என அழைக்கலாம். இந்த இடத்தில் யூக்ளிட் கேட்ட கேள்வி, “பகா எண்கள் எண்ணிலடங்காமல் தொடர்ந்து இயல் எண்களில் வருவது போல், இரட்டைப் பகா எண்களும் எண்ணிலடங்காமல் தொடந்து வருமா?” என்பது தான்.

இந்தக் கேள்விக்கான பதில்-இரட்டைப் பகா எண்கள் எண்ணிலடங்காமல் தொடர்ந்து வருவது உண்மையாக இருப்பதற்கான எல்லா சான்றுகளும் இருந்தும், இதற்கு முழுமையான தீர்வு கண்டறிய கணித ஆராய்ச்சியாளர்கள் மிகவுமே மெனக்கெட வேண்டியுள்ளது என்பதே. இன்று வரை இந்தக் கேள்விக்கான முழுமையான விடை நிரூபிக்கப் படவில்லை என்பது தான் உண்மை நிலைமை.

இந்தக் கேள்வி யூக்ளிட் காலத்திலிருந்தே கேட்கப்பட்டு வந்தாலும், அச்சு வடிவில் வெளிவந்தது 1849 ஆம் ஆண்டில் தான்.

பகா எண்களின் பரவல், இயல் எண்களில் எந்த ஒழுங்கும் இல்லாமல் இருப்பதோடு, இயல் எண் நேர்கோட்டில் நீண்ட தூரம் செல்லச் செல்ல பகா எண்கள் தென்படுவது குறைந்து கொண்டே இருக்கிறது என்பதைக் காணலாம். சிலர் பணக்காரர் ஆக ஆக, வடிகட்டின கருமி ஆவது போல.

சரி, இரட்டைப் பகா எண்களைப் பற்றிய கேள்விக்கான பதிலைத் தான் நிறுவ முடியவில்லை, குறைந்தபட்சம் இயல் எண் நேர்கோட்டில் ஒரு குறிப்பிட்ட அளவிலான எண் வித்தியாசத்தில் இரண்டு பகா எண்களைக் கண்டறிய முடியுமா என, 200 ஆண்டுகளுக்கும் மேலாக கணித ஆய்வாளர்கள் முயன்று வந்தார்கள்.. இங்கு தான் சாங், தனது முக்கியமான முடிவை இந்த ஆண்டு மே மாதம் வெளியிட்டு, கணித உலகத்தையே திகைக்க வைத்தார். 70 மில்லியன் எண்கள் இடைவெளியில், தொடர்ந்து எண்ணிலடங்காதளவு இரண்டு பகா எண்களை இயல் எண்களில் காண முடியும் என நிறுவினார்.70 மில்லியன் என்பது மிகப் பெரிய இடைவெளி போலத் தோன்றும். ஆனால் இங்கு நினைவில் கொள்ள வேண்டியது சாங் இந்த முடிவைக் கொடுப்பதற்கு முன் குறிப்பிட்ட இடைவெளியில் இரண்டு பகா எண்களைக் கண்டறிய முடியுமா எனத் தெரியாமலே இருந்தது.

zhang

ஆனால் 70 மில்லியன் இடைவெளி என சாங் எடுத்துக் கொண்டதில் எந்தப் புனிதத்தன்மையும் இல்லை. அந்த எண் நிரூபணம் கொடுக்க வசதியாக இருந்ததால் சாங் இதை எடுத்துக் கொண்டுள்ளார்.மேலும் சாங் அவர்கள் இந்தக் கணக்கை நான்கு ஆண்டுகள் தொடர்ந்து ஒரு நாளைக்கு குறைந்தது பத்து மணிநேரம் சிந்தித்ததால், மிகவும் சோர்வான நிலையில் 70 மில்லியன் என்ற இடைவெளியை முடிந்த அளவு குறைக்க முயலவில்லை. ஆனால் மற்ற எண்கணித நிபுணர்கள் இந்த இடைவெளியைக் குறைக்க முடியும் எனப் பார்க்க முயன்று, அந்தப் பணியில் ஈடுபட்டார்கள். குறிப்பாக இன்றளவில் உலகப் புகழ்பெற்ற கணித மேதைகளில் ஒருவரான, கலிபோர்னியா பல்கலைக் கழகத்தில் பேராசிரியராக இருக்கும் டெரென்ஸ் டௌ இந்தக் கணக்கில் ஈடுபாடுள்ள உலகிலுள்ள மற்ற கணித ஆராய்ச்சியாளர்களும் பங்கேற்கும் வகையில் பாலிமத் ப்ராஜெக்ட் 8 (Polymath Project 8) எனும் கூட்டு முயற்சியை இணையத்தில் தொடங்கினார். இந்த இடைவெளியைக் குறைப்பதில் கணிப்பு எண்கணித ஆய்வாளர்கள் (computational Number theorists) பெருமளவில் ஈடுபட்டார்கள். குறிப்பாக பாஸ்டனில் உள்ள எம் ஐ டி பல்கலையில் பேராசிரியராக இருக்கும் ஆன்ட்ரு சுதர்லண்ட் முக்கியப் பங்காற்றினார். சுதர்லண்ட் சென்ற கோடையில் சிகாகோவில் ஒரு ஓட்டலில் தங்கச் சென்ற சமயம், அவர் அங்கு வேலை செய்த அலுவலரிடம் ஒரு கணிதக் கூட்டமைப்பில் கலந்து கொள்ள வந்ததாக கூறினார். உடனே அந்த அலுவலர் “ஒ! அந்த 70 மில்லியன்” எனக் கேட்டுள்ளார். இதைக் கேட்டவுடன் சுதர்லண்ட் தன்னுடைய கோடை விடுமுறையைத் தியாகம் செய்து, முழு மூச்சாக சிங் கொடுத்த 70 மில்லியன் இடைவெளியைக் குறைப்பதில் தன்னை ஈடுபடுத்திக் கொண்டார். அதன் விளைவு 70 மில்லயன் என்றிருந்த இடைவெளி 4680 ஆகக் குறைந்தது. இந்த இடைவெளிக் குறைவிற்கு மிகவும் உதவிய முக்கிய முடிவை நிறுவியது இந்த ஆண்டிற்கான ஏபல் பரிசு வென்ற டெலின் என்பது குறிப்பிடத் தக்கது. இந்த நிரூபணத்தைக் கொடுக்க சாங் போட்ட இந்த பாதையை எண்கணித வல்லுனர்கள் மிகவும் பாராட்டியுள்ளார்கள்.

இது ஒருபுறம் நடந்து கொண்டிருக்க, அமைதியாக கனடாவில் இருக்கும் மண்ட்ரீயால் பல்கலைக் கழகத்தில் (Université de Montréal)சென்ற ஆண்டு எண்கணிதத்தில் முனைவர் பட்டம் பெற்று, அதற்குப் பிறகான ஆராய்ச்சியை மேற்கொண்டிருக்கும் ஜேம்ஸ் மேய்னர்ட் (James Maynard) நவம்பர் மாத நடுவில் 600 எண்கள் இடைவெளியில் இரண்டு பகா எண்களைத் தொடர்ந்து இயல் எண்களில் எண்ணிலடங்காத அளவு கண்டறிய முடியும் என்ற நிரூபணத்தை வெளியிட்டார். ஜேம்ஸ் பயன்படுத்திய நிரூபண முறை சாங்கின் முறையிலிருந்து வேறுபட்டது.

எட்டு ஆண்டிற்கு முன் இரண்டு கணித விற்பன்னர்கள் இந்த பகா எண்கள் குறித்த விடை காணும் முயற்சியாக ஒரு ஆராய்ச்சிக் கட்டுரையை வெளியிட்டார்கள்.ஆனால் அதில் பிழை இருப்பதாக சுட்டிக் கட்டப்பட்டது. அதன் பிறகு அந்த இரண்டு கணிதவியலாளர்களுடன் மேலும் ஒரு கணித ஆராய்ச்சியாளர் சேர்ந்து அந்த பிழையைச் சரிசெய்து வேறு கட்டுரையை வெளியிட்டார்கள். அதற்கு பிறகு இந்தக் கணக்கில் ஆராய்ச்சி செய்தவர்கள் இந்த இரண்டாவது ஆராய்ச்சிக் கட்டுரையை முன்வைத்து தங்கள் ஆராய்ச்சியைத் தொடர்ந்தார்கள். ஆனால் ஜேம்ஸ் மாற்றி யோசி என்பதற்கு இணங்க பிழையாக வெளியிடப்பட்ட கட்டுரையை கையிலெடுத்தார். அதில் பயன்படுத்திய உத்தியில் என்ன மாற்றம் செய்யலாம் என சிந்தித்ததின் விளைவு தான் இந்த இறுதி முடிவு. இதே நேரத்தில் டெரென்ஸ் டௌ இதே போல் சிந்தித்து தனியாக இதே விடையைக் கண்டறிந்தது கவனிக்க வேண்டியது.

இதுவரை கட்டுரையில் கூறியவற்றைத் தொகுக்கலாம்:

இயல் எண்களில் பகா எண்கள் எண்ணிலடங்காதளவு (infinite) இருக்கின்றன. பகா எண்கள் எந்த ஒழுங்கும் இல்லாமல் இயல் எண் நேர்கோட்டில் அமர்ந்திருக்கின்றன. இயல் எண் நேர்கோட்டில் தொடர்ந்து பயணித்தால் பகா எண்களைக் காண்பது அரிதாகிறது. அதே சமயம் அடுத்தடுத்த ஒற்றைப் படை எண்கள் பகா எண்களாகத் தொடர்ந்து இருப்பதற்கான எல்லா அறிகுறிகளும் இருந்தும், அதை நிரூபிக்க முடியவில்லை. குறைந்த பட்சம் ஒரு குறிப்பிட்ட அளவிலான எண் வித்தியாசத்தில் தொடர்ந்து இயல் எண் நேர்கோட்டில் பகா எண்களைக் கண்டறிய முடியுமா என்ற கேள்விக்குதான் சாங் மற்றும் ஜேம்ஸ் விடை கொடுத்துள்ளார்கள். மூன்று படிகளில் தங்கள் முடிவை நிறுவியுள்ளார்கள்.

1. வடிகட்டுதல் (sieve) முறையை பயன்படுத்துவது.
2. எத்தனை எண்களைக் கொண்ட கணம் தேவைப்படும் (set of numbers)
3. அந்த எண்களால் ஆன கணத்தை எப்படி கட்டமைப்பது?

சாங் மற்றும் ஜேம்ஸ் நிரூபணங்களில் பயன்படுத்திய முக்கிய உத்தி வடிகட்டுதல் (sieve) எனலாம். வடிகட்டுதல் எனில் இயல் எண்களில் எந்தெந்த எண்கள் வேலைக்காகாது எனப் பார்த்து அவைகளை நீக்கி விட்டால், எஞ்சியுள்ள எண்கள் பகா எண்களாக இருக்கும். குறிப்பாக இரண்டைத் (2) தவிர எல்லா இரட்டைப் படை இயல் எண்களையும் நீக்கி விடலாம். அப்படியெனில் மீதமுள்ள இயல் எண்களில் எந்த மாதிரி எண்களால் ஆன கணத்தையும் (set of integers) எடுத்துக் கொண்டு அதில் பகா எண்கள் இருக்கின்றனவா எனப் பார்க்கலாம். ஆனால் அந்த மாதிரி கணத்தை கண்டறிவது மிகச் சாதுர்யமாகச் செய்ய வேண்டியது. அதைத் தான் சாங் மற்றும் ஜேம்ஸ் செய்துள்ளார்கள். உதாரணமாக n>3 எனும் எந்த ஒற்றை படை எண்ணை எடுத்துக் கொண்டாலும், n,n+2,n+4 என்ற மூன்று எண்களில் ஒரு எண் நிச்சயமாக 3 ஆல் வகுபடும்.குறிப்பாக 5, 7,9 என எடுத்தால் 9 என்ற எண் 3 ஆல் வகுபடுவதைக் காணலாம்.அதே போல் n,n+6,n+12,n+18,n+24 எண்களில் ஏதாவது ஒரு எண் 5 ஆல் வகுபடுவதைக் காணலாம். இப்போது n,n+2,n+6 எனும் எண்களை எடுத்துக் கொண்டால் இதில் வரும் எண்களுக்கு எந்த பொதுவான வகுபடும் விதியும் இல்லை. எனவே எந்த கணத்தை எடுத்துக் கொள்வது எனக் கண்டறிவது கடினம். இதையே சற்று எளிய முறையில் விளக்கப் பார்ப்போம்.

ஜேம்ஸ் என்ன செய்தார் என்றால் 105 எண்களைக் கொண்ட கணம் தேவைப்படும் என நிறுவினார். அந்த கணத்தில் வரும் எண்களை சில குறிப்பிட்ட மாறுபடும் இடைவெளியில் எடுத்துக் கொண்டார். அதாவது n,n+10,n+12,n+24,….n+600 என இருக்குமாறு கணத்தின் எண்களை எடுத்துக் கொள்ள வேண்டும். இதில் n இன் மதிப்பு இயல் எண்களில் வேறுபட, வேறுபட வெவ்வேறு 105 எண்களைக் கொண்ட கணங்கள் கிடைக்கும் . எண்ணிலடங்காத n – இன் மதிப்புகளுக்கு (infinite number of values of n) முறையே கிடைக்கும் 105 எண்களைக் கொண்ட கணங்களில் இரண்டு பகா எண்களை நிச்சியம் காண முடியும். உதாரணமாக, 15,25,27,39,43,45,………609,613,615 எனும் 105 எண்களைக் கொண்ட கணத்தில் இரண்டு பகா எண்கள் இருப்பதைக் காணலாம். இங்கு இடைவெளி என்பது இந்த கணத்தில் இருக்கும் மிகப் பெரிய மற்றும் மிகச் சிறிய எண்ணிற்கான் வித்தியாசம். இங்கு அந்த வித்தியாசம் 600 என இருப்பதைக் காணலாம். இதைத்தான் சாங் 3,500,000 எண்கள் கொண்ட கணமாகவும், பெரிய மற்றும் சிறிய எண்ணிற்குமான இடைவெளி 70 மில்லியன் எனவும் நிரூபணம் கொடுத்திருந்தார். இங்கு தான் சாங் மற்றும் ஜேம்ஸின் ingenuity பாராட்டப்பட வேண்டியது.

அதாவது இயல் எண் நேர்கோட்டில் பயணித்துக் கொண்டேயிருந்தால் இரண்டு பகா எண்கள் இருக்குமாறு 105 எண்களைக் கொண்ட வெவ்வேறு கணங்களை தொடர்ந்து முடிவில்லாமல் கடந்து சென்று கொண்டே இருக்கலாம்

இப்போது இரண்டு பாதைகளில் இரட்டை பகா எண்கள் குறித்த விடையை நிரூபிக்க பயணம் செய்ய ஏதுவாக உள்ளது. இந்த இரண்டு பாதையையும் இணைத்து மேலும் இந்த இடைவெளியைக் குறைக்க முடியுமா என கணித ஆராய்ச்சியாளர்கள் முயன்று வருகிறார்கள். ஆனாலும் ஜேம்ஸ் “இந்த உத்தி இரட்டைப் பகா எண்கள் குறித்த கேள்விக்கு முழு விடையைக் கொடுக்க முடியாது. அதற்கு மேலும் சில கணித உபகரணங்கள் தேவைப்படுகிறது” எனக் கூறியுள்ளார்.

ஜேம்ஸ் கொடுத்த நிரூபணம் இரண்டுக்கு மேற்பட்ட பகா எண்களைக் கண்டறியவும் உதவக் கூடியது. எண்கணிதத்தில் ஏற்பட்டுள்ள இந்த முன்னேற்றமானது பொன்னால் பொறிக்கப் பட வேண்டியது என்பதில் சந்தேகமில்லை

இதுபோன்ற கணிதக் கட்டுரைகள் படிக்கும் ஒரு சிலரது கேள்வி, இதனால் சமுதாயத்திற்கு என்ன பயன் என்பது தான். அதற்கு பதில் கணித மேதை G.H. ஹார்டி அவர்கள் கூறிய

“I am interested in mathematics only as a creative art.” என்பது தான்.

மேற்கோள்கள்:

1. http://www.wired.com/wiredscience/2013/11/prime/all/
2.http://terrytao.wordpress.com/2013/12/08/polymath8b-iii-numerical-optimisation-of-the-variational-problem-and-a-search-for-new-sieves/

Leave your response!

Add your comment below, or trackback from your own site. You can also subscribe to these comments via RSS.

Be nice. Keep it clean. Stay on topic. No spam.

You can use these tags:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This is a Gravatar-enabled weblog. To get your own globally-recognized-avatar, please register at Gravatar.

CAPTCHA * Time limit is exhausted. Please reload CAPTCHA.